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Key Partners
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• Developers

• Richard Middleton, Brendan Hoover (Los Alamos).

• Sean Yaw (Montana State University).

• Kevin Ellett (Indiana University; IU).

• Users/publishers

• Jeff Bielicki (The Ohio State University).

• Andres Clarens (University of Virginia).

• Adam Brandt (Stanford University).

• Mike Kuby, Jorge Sefair (Arizona State University).

• Sam Taylor (University of West Virginia).

• Current Los Alamos projects

• US-China “Clean Coal” CERC.

• DOE Regional Partnerships.

• DOE CarbonSAFEs (~10 for Los Alamos and IU)

• SimCCS: Development and Applications

• Institutions

• Southern Company

• Great Plains Institute

• Chinese Academy of Sciences
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BACKGROUND

SimCCS Origins
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• Earth and Environmental Sciences

• Applied long history of flow & transport on 

porous media to carbon sequestration.

• Scales ranging from pore to site scale.

• Full-physics and reduce order modeling.

• Only a limited focus on capture.

• CO2 capture and transport (CCS)

• Classic source-network-sink optimization 

problem.

• Postdoctoral research work (2006)
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• Earth and Environmental 

Sciences

• Applied long history of flow & 

transport on porous media to 

carbon sequestration.

• Scales ranging from pore to 

site scale.

• Full-physics and reduce order 

modeling.

• Only a limited focus on 

capture.

• CO2 capture and 

transport (CCS)

• Classic source-network-sink 

optimization problem.

• Postdoctoral research work 

(2006)
Middleton and Bielicki (2009) A scalable infrastructure model for carbon capture and storage: SimCCS, Energy Policy 
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SimCCS
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• SimCCS Framework

• Optimization engine.

• Integrated capture, transport, 

and storage models that 

define economical and 

engineering parameters.

• CAPTURE

• Literature values.

• IECM model (costs, CO2).

• TRANSPORT

• Cost surface.

• Candidate network.

• STORAGE

• Reduced order model 

(CO2PENS).

• Custom cost model.

Middleton and Bielicki (2009) A scalable infrastructure model for carbon capture and storage: SimCCS, Energy Policy 
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MODELS/APPLICATIONS

(1) SimCCSCAP
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• Original model

• Cap-and-trade version of SimCCS → set 

CO2 cap (or target) & minimize costs.

• Inverse: set economic cap and maximize 

CO2.

• Southern Company

• Ten year business plan and CO2 emissions 

strategy.

• 20 coal-fired plants, 156 MtCO2/yr

emissions.

• 65 individual boilers→ boiler level accuracy.

• CAPTURE COSTS: $46-102/tCO2 (plant) & 

$41-166/tCO2 (boiler).

• STORAGE: 3.4 GtCO2 in 7 sinks, 113 

MtCO2/yr over 30 years.

• STORAGE COSTS: $3.78-8.60/tCO2.

Middleton et al. (2012) The cross-scale science of CO2 capture and storage: from pore scale to regional scale, Energy & Environmental Science
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MODELS/APPLICATIONS

(2) SimCCSTAX
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• Alberta oil sands

• In situ extraction, surface 

mining, & upgrading.

• 22 sources emitting 40 

MtCO2/yr, 36 MtCO2/yr at 

90% capture rate.

• 16 reservoirs (acid gas 

injection) with 2.5 GtCO2 

storage capacity.

• Cost surface

• Detailed explanation of 

geography contributing to cost 

surface.

• First non-US cost surface 

(others now include France 

and China).

Middleton and Brandt (2013) Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing, Environmental Science and Technology
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MODELS/APPLICATIONS

(2) SimCCSTAX
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• Impact of a CO2 tax

• SimCCS reformulated to 

account for CO2 emission 

price.

• Minimizes costs, sources only 

capture if avoiding CO2 tax is 

profitable.

• Direct application to “45Q”.

• Increasing CO2 tax

• Infrastructure response to 

economic incentives.

• Drives increasing CO2 capture 

rates and emissions 

reduction.

Middleton and Brandt (2013) Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing, Environmental Science and Technology
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MODELS/APPLICATIONS

(3) SimCCSTIME
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• Temporal dynamics

• SimCCSTIME

• Synthetic dataset based 

on Natcarb

• Results

• Reduced costs by over-

building infrastructure 

(i.e., underusing infra-

structure for 5+ years).

• Significant economic 

gains from cooperation, 

particularly for small 

emitters.
• overbuilds infrastructure (e.g., pipelines, capture) in early 

periods to achieves long-term economies of scale
• overall CCS costs rise through time as more expensive 

CO2 sources are brought online, transport costs fall 
through increased utilization (Chart A)

• SimCCSTIME balances CCS costs across all time periods 
while minimizing costs in any one time period (Chart B)

Texas panhandle
• 9 CO2 sources (2 biorefineries, 2 

oil refineries, 2 coal and 3 natural 
gas stations) producing 21 
MtCO2/yr

• 3 sequestration reservoirs 
(depleted oil fields) with 862 
MtCO2 capacity

A

B

• spatial optimization framework for CO2 capture and 
storage (CCS) infrastructure (capturing, transporting, 
injecting/storing CO2) through multiple time periods

• deploys CCS networks to meet a CO2 cap (i.e., cap-and-
trade) or in response to a price/tax to emit CO2

• intended to be used by scientists, CCS stakeholders, 
policy makers, and general public

SimCCSTIME Scenario

Middleton et al. (2012) A dynamic model for optimally phasing in CO2 capture and storage infrastructure, Environment Modelling & Software
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MODELS/APPLICATIONS

(4) Linear Model
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• Ethylene and CO2-EOR

• Industrial source of CO2.

• Market for CO2 (i.e., CO2-

EOR).

• Linearized pipelines

• Massively reduces the 

number of discrete variables 

(hard to solve for) and 

constraints.

• Reduces solution times 

between one to two orders of 

magnitude. 

Middleton (2012) A new optimization approach to energy network modeling: anthropogenic CO2 capture coupled with enhanced oil recovery, International Journal of Energy Research
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MODELS/APPLICATIONS

(5) SimCCS2.0
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• Complete redesign

• Open source.

• Java based (multi-platform).

• HPC-enabled.

• Pug-and-play code.

• Public domain

• “Business model” rethink.

• Enable collaborations.

• Multi-institutional efforts.

• https://github.com/SimCCS/Si

mCCS.

• Cost surface

• Beta code integrated into 

SimCCS for the first time.

Middleton et al. (2018) An open-source tool for optimizing CO2 capture, transport, and storage infrastructure, Environmental Modelling & Software (in review)
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CURRENT PROJECTS

CarbonSAFEs (Los Alamos)
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• Phase I (wrapped)

• Rocky Mountain (University of 

Utah).

• Nebraska (Battelle).

• Ohio (Battelle).

• Michigan (Battelle).

• Phase II

• Nebraska+ (Battelle).

• US Southeast (SSEB).

• _______________________

• Nebraska CCS Complex

• Integrated Mid-Continent 

Stacked Carbon Storage Hub.

• Prototype project to jumpstart 

commercial-scale CCUS?
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CURRENT PROJECTS

CarbonSAFEs (Indiana University)
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CURRENT PROJECTS

China
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• US-China CERC-ACTC

• Clean Energy Research 

Center (CERC) for Advanced 

Coal Technologies 

Consortium (ACTC).

• Collaboration with Chinese 

Academy of Sciences.

• Logistics

• 290 sources emitting 350 

MtCO2/yr.

• Large saline storage 

opportunities, minimal 

utilization options. 

• China-wide cost surface.

Stauffer et al. (2014) System integration linking CO2 sources, sinks, and infrastructure for the Ordos Basin, China, Energy Procedia



L
A

-U
R

-1
8
-2

9
4
0
8

CURRENT PROJECTS

State Carbon Capture Work Group
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• Carbon Capture Coalition

“,,,realize carbon capture’s full 

potential as a national energy, 

economic, and environmental 

strategy.”

• Regional Carbon Capture 

Deployment Initiative

• MT and WY governors. 

• Capitalize on 45Q tax credit.

• Nationwide mapping, identify 

low-cost CO2 capture projects.

• State-led efforts.

CONTACT: Brad Crabtree; 

bcrabtree@gpisd.net.
http://www.betterenergy.org/blog/press-release-14-state-work-group-releases-federal-state-recommendations-carbon-capture/
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CURRENT PROJECTS

Uncertainty
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• Geologic uncertainty

• SCO2T (NRAP-IAM): → 

injection rate & storage. 

• Formation thickness, 

permeability, and porosity. 

• SimCCS: uncertainty impact 

on injection/storage costs.

• Impact

• PERMEABILITY: injectivity → 

number of wells → cost.

• POROSITY: pore space → fix 

site costs.

• Correlated permeability and 

porosity in similar formations.

• TIPPING POINT: ~0.25 

MtCO2/yr (due to number of 

required wells).
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CURRENT PROJECTS

Uncertainty

10/3/2018 |   21Los Alamos National Laboratory Middleton and Yaw (2018) The Cost of Getting CCS Wrong, International Journal of Greenhouse Gas Control

• Results

• New infrastructure required to 

make solutions feasible (i.e., 

“stranded CO2”).

• Dramatic differences in CCS 

infrastructure and costs.

• Duplicated infrastructure.

• Stranded CO2

• Penalty for not emitting 

“excess” CO2. 

• 1–2 years CO2 tax transforms 

best solution into worst case.

• Design resilient 

infrastructure?
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UNCERTAINTY

New Approach: Endogenously Handling Uncertainty
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Model Update: Design 

network that intrinsically 

accounts for uncertain 

parameters.
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Capability: Generates 

robust solution given 

uncertain parameters.
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UNCERTAINTY

New Approach: Endogenously Handling Uncertainty

10/3/2018 |   24Los Alamos National Laboratory

• New Model Performance

• Able to leverage intelligent 

overbuilding not explored by 

previous methods.

• Proof-of-concept scenario 

yields 16% cost savings for 

new model over previous 

methods.

Existing model with 

previous uncertainty 

methods.

New model with intrinsic 

uncertainty handling. 
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Model Update: Design 

network that intrinsically 

accounts for uncertain 

parameters.

෍

𝒊∈𝑺

𝑭𝒊
𝒔𝒔𝒊

𝒃+෍

𝒌∈𝑲

෍

𝒄∈𝑪

𝜷𝒌𝒄𝒚𝒌𝒄
𝒃 +෍

𝒋∈𝑹

෍

𝒖∈𝑼

𝑭𝒋
𝒓𝒓𝒋𝒖

𝒃

𝑏𝑎𝑠𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑠𝑡

+
1

𝑈
෍

𝒖∈𝑼

෍

𝒊∈𝑺

𝑭𝒊
𝒔𝒔𝒊𝒖+ 𝑽𝒊

𝒔𝒂𝒊𝒖 +෍

𝒖∈𝑼

෍

𝒌∈𝑲

෍

𝒄∈𝑪

𝜶𝒌𝒄𝒑𝒌𝒄𝒖 +෍

𝒖∈𝑼

෍

𝒌∈𝑲

෍

𝒄∈𝑪

𝜷𝒌𝒄𝒚𝒌𝒄𝒖 +෍

𝒖∈𝑼

෍

𝒋∈𝑹

𝑭𝒋
𝒓𝒓𝒋𝒖 +𝑽𝒋

𝒓𝒃𝒋𝒖

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑑𝑒𝑙𝑡𝑎 𝑐𝑜𝑠𝑡𝑠

Source/Sink opening & 

pipeline construction costs

Network utilization + construction 

for uncertain parameters.

𝑸𝒌𝒄
min 𝒚𝒌𝒄𝒖 + 𝒚𝒌𝒄

𝒃 ≤ 𝒑𝒌𝒄𝒖 ≤ 𝑸𝒌𝒄
max 𝒚𝒌𝒄𝒖 + 𝒚𝒌𝒄

𝒃 , ∀𝒌 ∈ 𝑲,∀𝒄 ∈ 𝑪, ∀𝒖 ∈ 𝑼 Pipeline capacity compatible with flow volume for delta designs

𝑸𝒌𝒄
min𝒚𝒌𝒄

𝒃 ≤ 𝒑𝒌𝒄
𝒃 ≤ 𝑸𝒌𝒄

max𝒚𝒌𝒄
𝒃 , ∀𝒌 ∈ 𝑲,∀𝒄 ∈ 𝑪 Pipeline capacity compatible with flow volume for base design

෍
𝒌∈𝑲:

𝒔𝒓𝒄 𝒌 =𝒊

෍

𝒄∈𝑪

𝒑𝒌𝒄𝒖 − ෍
𝒌∈𝑲:

𝒅𝒔𝒕 𝒌 =𝒊

෍

𝒄∈𝑪

𝒑𝒌𝒄𝒖 = ቐ

𝒂𝒊𝒖
−𝒃𝒊𝒖
𝟎

𝒊 ∈ 𝑺
𝒊 ∈ 𝑹

otherwise

, ∀𝒊 ∈ 𝑰, ∀𝒖 ∈ 𝑼 Conservation of flow for delta designs

෍
𝒌∈𝑲:

𝒔𝒓𝒄 𝒌 =𝒊

෍

𝒄∈𝑪

𝒑𝒌𝒄
𝒃 − ෍

𝒌∈𝑲:
𝒅𝒔𝒕 𝒌 =𝒊

෍

𝒄∈𝑪

𝒑𝒌𝒄
𝒃 = ൞

𝒂𝒊
𝒃

−𝒃𝒊
𝒃

𝟎

𝒊 ∈ 𝑺
𝒊 ∈ 𝑹

otherwise

, ∀𝒊 ∈ 𝑰 Conservation of flow for base design

𝒂𝒊𝒖 ≤ 𝑸𝒊
𝒔 𝒔𝒊𝒖 + 𝒔𝒊

𝒃 , ∀𝒊 ∈ 𝑺, ∀𝒖 ∈ 𝑼 Source capture capped by maximum production for delta designs

𝒂𝒊
𝒃 ≤ 𝑸𝒊

𝒔𝒔𝒊
𝒃, ∀𝒊 ∈ 𝑺 Source capture capped by maximum production for base design

𝒃𝒋𝒖 ≤ 𝑸𝒋𝒖
𝒓 𝒓𝒋𝒖 + ෍

𝒘∈𝑼

𝒓𝒋𝒘
𝒃 , ∀𝒋 ∈ 𝑹, ∀𝒖 ∈ 𝑼 Reservoir storage capped by maximum capacity for delta designs

𝒃𝒋
𝒃 ≤ ෍

𝒖∈𝑼

𝑸𝒋𝒖
𝒓 𝒓𝒋𝒖

𝒃 , ∀𝒋 ∈ 𝑹 Reservoir storage capped by maximum capacity of base 

parameters

𝑟𝑗𝑢
𝑏 ≤ 𝑣𝑢 , ∀𝑗 ∈ 𝑅, ∀𝑢 ∈ 𝑈 Set base design uncertainty parameter selection variables

෍

𝑢∈𝑈

𝑣𝑢 ≤ 1 Single uncertainty parameter selected for base network

෍

𝒊∈𝑺

𝒂𝒊𝒖 ≥ CO2Cap, ∀𝒖 ∈ 𝑼 Total captured meets target for delta designs

෍

𝒊∈𝑺

𝒂𝒊
𝒃 ≥ CO2Cap Total captured meets target for base network

𝒔𝒊𝒖 + 𝒔𝒊
𝒃 ≤ 𝟏, ∀𝒊 ∈ 𝑺, ∀𝒖 ∈ 𝑼 Source opened at most once

𝒚𝒌𝒄𝒖 + 𝒚𝒌𝒄
𝒃 ≤ 𝟏,∀𝒌 ∈ 𝑲,∀𝒄 ∈ 𝑪, ∀𝒖 ∈ 𝑼 Edge opened at most once

𝒓𝒋𝒖 + ෍

𝒘∈𝑼

𝒓𝒋𝒘
𝒃 ≤ 𝟏, ∀𝒋 ∈ 𝑹, ∀𝒖 ∈ 𝑼 Reservoir opened at most once

Capability: Generates 

robust solution given 

uncertain parameters.
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CURRENT PROJECTS

SimCCS: Development and Applications

10/3/2018 |   26Los Alamos National Laboratory

• New project

• DOE Fossil Energy.

• Started September 2018.

• Tasks:

1. New cost surface science 

and tools (CostMAP).

2. Develop meta-heuristic to 

solve complex problems and 

large domains.

3. Preparation for R&D100.

CostMAP: Cost Surface Multi-Aggregation Program
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CURRENT PROJECTS

CostMAP: Cost Surface Multi-layer Aggregation Program

10/3/2018 |   27Los Alamos National Laboratory

• Improved Accuracy

Identifies barriers more 

accurately.

• Top shows the results from a 

traditional kernel. 

• Bottom shows the results 

from the search kernel in 

CostMAP.
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CURRENT PROJECTS

CostMAP

10/3/2018 |   28Los Alamos National Laboratory

• Improved Accuracy

Identifies corridors more 

accurately.

• LEFT shows the results from 

a traditional kernel. 

• RIGHT shows the results from 

the search kernel in CostMAP.
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ALIGNED WORK

SCO2NE

10/3/2018 |   29Los Alamos National Laboratory

• Power and industrial 

sources of CO2

• Sources of CO2 that are not 

electricity (SCO2NE)!

• Industrial and power CO2

emissions → EPA GHG and 

other sources.

Middleton et al. (2017) Industrial CO2 and carbon capture: near-term benefit, long-term necessity, Energy Procedia
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ALIGNED WORK

Great SCO2T!

10/3/2018 |   30Los Alamos National Laboratory

• Sequestration of CO2

Tool (SCO2T)

• Excel-based tool for Windows 

and Macs (no installation!).

• Reduced order models trained 

by multiphase physics (i.e., 

FEHM).

• Integrated with SimCCS’ 

storage economic model (i.e., 

SCO2T exports SimCCS-

ready storage input data).

Middleton (2014) Secure and sustainable energy infrastructure: The case of CO2 capture, utilization, and storage, LA-UR-14-21812

Injectivity (permeability)

Injectivity (porosity)

Plume (permeability) # wells (permeability) Capacity (porosity) Cost (porosity)

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-14-21812
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ALIGNED WORK

SimCCS Gateway

10/3/2018 |   31Los Alamos National Laboratory

• Science Gateway

• Indiana University thrust.

• Portal to SimCCS desktop or 

online SimCCS.

• High-performance computing 

(currently IU’s Big Red, 

ultimately could based).

• Dependent on SimCCS base 

developments.

WEBSITE: https://simccs.org/
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TAKE HOME MESSAGE

Questions?

10/3/2018 |   32Los Alamos National Laboratory



L
A

-U
R

-1
8
-2

9
4
0
8

ADDITIONAL MATERIAL

CostMAP: Comparison of cost calculation

10/3/2018 |   33Los Alamos National Laboratory

• Top

• Cost surface and cost Network 

calculation in most GIS 

programs. 

• Bottom

• Cost surface and Cost network 

calculation in CostMAP.
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ADDITIONAL MATERIAL

CostMAP: Search Kernel Rules

10/3/2018 |   34Los Alamos National Laboratory

Barriers Corridors


